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S1 Introduction

Large scale analysis of data in Bioinformatics requires many software to be executed in a pipelined
fashion where output of a upstream stage is fed as input to a downstream stage. Generally each such
software takes a considerable amount of computing resources such as CPU time and memory. If
the pipeline needs to be executed multiple times, may be due to input or parameter variations, it is
desired that only the bare minimum stages that are affected by the variations are re-executed. The
rest should be reused from the previous execution. To address such a requirement, many workflow
management systems (WMS) have been developed. One of the earliest and widely used system is
Make [S5]. Each stage of the pipeline is specified as a rule of commands in Make to generate the
output(s) from the input(s). Make automatically figures out the interdependency among the rules
and by using a directed acyclic graph (DAG) of the rules executes the commands in a suitable order
such that all inputs are already available before a command is executed. Moreover, if all inputs are
unchanged, Make skips the execution of that command.

Make has a steep learning curve, specifically for the biologists. Several newer WMS have been
developed to specify Make rules in simpler languages, e.g., Snakemake [S2] and Nextflow [S1] use
simplified Python and Groovy, respectively. These WMS can also schedule the pipeline tasks
efficiently on multiprocessor environments by exploiting the DAG of rules.

However, these WMS require significant effort in scripting to ensure optimal execution of the
stages when the pipeline needs to be executed multiple times due to changes in different parameters
such as thresholds, algorithmic methods, and hyper-parameters of machine learning algorithms.
Generally these changes affect only a part of the pipeline leaving some scope for resource saving
by fresh execution of the affected parts only. Though Snakemake and Nextflow enable adhoc use
of wildchar parameters for easy scripting, a systematic handling of parameters is lacking in the
literature. Moreover, these systems focus on each stage of the pipeline separately and the lack
of information sharing across stages makes plug-and-play of stages difficult. For example, if a file
generated by one stage is used as input in multiple stages downstream then the details of the file
need to be re-specified unnecessarily in each downstream stage making it tedious when there are
several parameters.

We develop JUDI on top of a Python based build system, DoIt [S4], to systematically handle
the issue of parameter settings using the principles of Data Base Management Systems (DBMS).
By abstracting each file and task in a pipeline stage with an associated parameter database JUDI
additionally enables true plug-and-play of pipeline stages. The novel ideas in JUDI not only simplify
pipeline scripting but also reduce script size significantly.
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S2 Parameter Database

The basic unit of execution in DoIt [S4], the underlying workflow management in JUDI, is a task
roughly equivalent to a collection of rules in Make [S5]. Like other workflow systems JUDI uses the
dependency among tasks based on their input and output files. However, the novelty of JUDI is a
consolidated way of capturing the variability under which the pipeline being build could possibly
be executed. This variability could be the parameters to the software used in the pipeline stages or
could be some new parameters introduced for the overall pipeline. JUDI stores this variability in a
simple table which contains one column for each parameter where each row indicates a value of the
parameter. The database is populated one parameter at a time by taking a Cartesian product of
the list of categorical values the parameter can take with the database constructed so far. Multiple
parameters are populated through a table which need not necessarily be the Cartesian product of
the parameters represented by the columns.

Table S1 illustrates parameter databases in JUDI using two example databases. Database A
has two parameters: 1) sample having four values {100, 101, 102, 103} could be representing
sequencing data from four individuals, and 2) group having two values {1, 2} representing the end
of paired-end sequencing data. Thus, the database table has two columns representing the two
parameters and 4x2 = 8 rows representing the Cartesian product of the two parameters. The four
samples themselves could have been from three patients, as shown in database B where the first two
patients have one sample each and the third patient has two samples. Thus the overall database
could have represented the Cartesian product of 1) a database of two variables: (patient, sample)
with four rows (P1, 1), (P2, 1), (P3, 1) and (P3, 2) and the single parameter, group, with two
values {1, 2}.

Table S1: Examples of parameter database

A

sample group

100 1
100 2
101 1
101 2
102 1
102 2
103 1
103 2

B

patient sample group

P1 1 1
P1 1 2
P2 1 1
P2 1 2
P3 1 1
P3 1 2
P3 2 1
P3 2 2

=

patient sample

P1 1
P2 1
P3 1
P3 2

×
group

1
2

S3 JUDI File

Each JUDI file is associated with a parameter database and hence does in fact represent a collection
of physical files each corresponding to one row of the parameter database. When associated with
example database A, a JUDI file reads could represent the eight FASTQ file instances: {100 1.fq,
100 2.fq, 101 1.fq, 101 2.fq, 102 1.fq, 102 2.fq, 103 1.fq, 103 2.fq}. The mapping from the
rows of the parameter database to the physical path of the file instances is stored by an extra
column for path in the parameter database.

A by-product of clubbing several physical files as a JUDI file is that if those files are defined in
an upstream task, any number of downstream tasks can refer to them by a single name instead of
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referring to or re-specifying each of the physical files. Thus, both inputs and targets are collections
of files which could be treated as input and output terminals of hardware modules, and hence
providing better plug-and-play.

S4 JUDI Task

Each JUDI task has four components: 1) inputs, 2) targets, 3) actions and 4) parameter database
where the first three components are similar to those in DoIt with the difference that each element
of inputs and targets is a JUDI file instead of a physical file. Like a JUDI file, a JUDI task represents
a collection of task instances each corresponding to a row of the parameter database. For example,
a JUDI task with parameter database A, an input ‘reads’ of the example above and a target ‘bam’
could align each of the eight FASTQ files to a reference genome and generate eight BAM files where
the alignment software and its arguments are specified through one of the actions for the task.

S5 Determining File Instances for a Task Instance

Consider a JUDI task T with parameter database DT and a JUDI file F (input or target) with
parameter database DF with common parameters X. In many cases like the example with ‘reads’
and ’bam’ above, DF = DT . Otherwise, there could be four possible scenarios as shown in Fig. S1.
First, when DT has an extra parameter Y , for each y ∈ Y instance (x, y) of T gets the same
instance x of F , ∀x ∈ X. Second, when DF has an extra parameter Y instance x of T gets a list
of all instances ∪y{(x, y)} of F . Third, when DF , DT have same parameters but row x of DF is
missing in DT , it does not create a problem as far as task instances are concerned. Fourth and
final, when row x of DT is missing in DF , opposite to third case, the instance x of T is undefined
and hence should be dealt as an error.

Thus, to determine the instances of F accessed in an instance of T the following sequence of
basic database operations are performed. Let DT,F denote the left outer join between DT and
DF on common columns X and for each (unique) row r of DT , let Dr

T,F denote the projection
Πr(DT,F ). Then instance r of T gets all file instances in Dr

T,F . Along with the physical path
information, Dr

T,F also contains the settings of extra parameters (if any) in DF and could be used
by any summarizing task.

S6 Implementation of JUDI using DoIt

JUDI is available as a Python library and any JUDI pipeline first populates a global parameter
database using the function add param to avoid repeated local definition in each task. A task is a
class derived from the base class Task and should have four class variables: 1) mask, 2) inputs, 3)
targets, 4) actions. Each of inputs and targets is a python dictionary where each key names
an input or target terminal (see Section S3) of the task and has as value an object of class File.
The object can be newly created using the class constructor or can refer to a File object created
before. For example, if an input terminal of a task A is connected to the target terminal t of another
task B, then A can access the corresponding file(s) directly by B[t]. In this way, the referring task
A need not repeat the definition of the file.

If the class variable mask is set in a task then it represents the list of parameters from the
global parameters database that are not applicable to the current task and the masked parameter
database for the current task is created accordingly. Otherwise the task parameter database is
assumed to be the same as the global parameter database. The actions for a task are specified by
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Figure S1: Operation on parameter databases for a task and a file.

the python list actions of tuples (fun, args) where fun could be a Python string denoting the
command line specification of the action with placeholders {} which are replaced by the list args
of values similar to Python format function with following exception: if a value is “$x” then the
placeholder is replaced by a string containing the list of paths of the file instances in Dr

T,x for the
task instance r. A fun could also be a Python function and args could additionally have a value
“#x” which JUDI replaces by a pandas DataFrame for Dr

T,x to pass to fun.

S7 A Toy Example from Snakemake Paper

We use a slightly modified version of the pipeline used in the Snakemake paper [S2] to illustrate the
ideas used in JUDI. The pipeline has four stages as shown in Figure S2. The first three stages are
same as in the Snakemake example. In the first stage, each of the eight FASTQ files, one for each
combination of 4 samples and 2 groups of pair-end reads, as mentioned in Section S2 is aligned to an
intermediate file. The intermediate files for the two groups of pair-end for each sample is converted
to a BAM file in the second stage of the pipeline. For each sample, the third stage generates a table
containing the coverage information. The fourth stage is different from the Snakemake example in
the sense, first the coverage tables of all samples are merged into a single consolidated coverage
table and then this combined information is plotted, unlike the fourth stage in Snakemake example
where the coverage plot is generated separately for each sample. Fig. S3 shows the pipeline from
Fig. S2 using JUDI tasks and files along with their parameter databases

Listing 1 shows the Python script dodo.py for the pipeline implemented using JUDI. When
command line doit -f dodo.py is executed, JUDI python library creates the task instances which
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Figure S2: An example pipeline. We slightly modified pipeline used in the Snakemake paper [S2]
to illustrate usefulness of JUDI.
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Figure S3: Example pipeline in Fig. S2 visualized using JUDI concepts.
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are executed by the DoIt engine. More details of JUDI and DoIt can be found in their users
manuals, pydoit.org and judi.readthedocs.io, respectively.

The usefulness of JUDI can be illustrated with two tasks in Listing 1. CreateBam has only one
parameter ‘sample’ whereas its both input files ‘reads’ and ‘sai’ have both parameters ‘sample’ and
‘group’. For each sample, the physical paths of sai and fastq files for both pair-end reads are passed
to the aligner bwa sampe automatically by JUDI through the argument substitutions $sai and
$reads. Similarly, CombineCoverage has no parameter but its input cov has a parameter sample.
The JUDI library function combine csvs merges the coverage files for all samples using Dr

T,cov and
Dr

T,csv (see Section S5) provided by argument substitutions #cov and #csv, respectively, where T
denotes CombineCoverage.

S8 A Real Example: Co-SELECT

We conceived the idea of JUDI while developing Co-SELECT [S3] for analyzing HT-SELEX data of
transcription factor (TF) DNA binding. The tool analyzed 5 rounds of data from 83 TF experiments
for 3 families by dividing the sequencing reads into two populations to find statistically significant
shape-strings which were enriched at 5 possible thresholds in both populations. Co-SELECT also
analyzed control experiments taking cross population data for two TFs in two different families.

The implementation of the Co-SELECT pipeline requires about 150 DoIt tasks with overall
2100 lines of Python code. For example, the stage of the pipeline where the oligos from a selection
are divided into two categories: motif-containing (referred here as foreground, or fg in short) and
motif-free (referred here as background, or bg in short) could be roughly implemented using only
DoIt as shown in Listing 2 which takes about 17 lines in addition to the function definition and
documentation lines.

The same stage of the pipeline can be implemented using JUDI on top of DoIt as shown in
Listing 3 which takes only 3 lines in addition to the function definition and documentation lines,
as most of the code due to the parameters are already encapsulated in the parameter database
associated with the task. Thus, using JUDI the 150 tasks could be implemented using 150x3 = 450
lines. This gives about 5 times reduction in scripting.

In general, for a typical pipeline with n parameters DoIt takes about 1 (for task definition) +
n (for n for loops) + 7 (for task instance generator) = n + 8 lines of code. Using JUDI on top of
DoIt the same pipeline can be implemented using 1 (for task definition) + 4 (task class variables)
= 5 lines of code. This gives an O(n)-factor improvement. This significantly reduces the effort
required to maintain the code. Moreover, the functions like combine csvs further reduce the effort
in summarizing results.

S9 Executing Pipeline in Multiprocessor Environments

To speed up the execution of a pipeline built using JUDI by utilizing multiple CPUs available
in the modern processors, DoIt can be invoked by doit -n N -f dodo.py where N denotes the
maximum number of independent tasks that DoIt should execute simultaneously.

When the task actions are specified as command strings, the tasks can be executed in a high
performance clustering environment by prefixing the command string by a cluster specific blocking
command (for example srun in Slurm [S6]).

We tested this solution in the Biowulf (http://hpc.nih.gov) cluster available at the NIH. We
modified the JUDI script for the example pipeline given in the main manuscript. For example, the
action for the task for aligning the reads was modified (shown in red) as in Listing 4 where the
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Listing 1: dodo.py: JUDI script for the pipeline in Fig. S3

1 from j u d i import Fi l e , Task , add param , combine csvs
2

3 add param ( ’ 100 101 102 103 ’ . s p l i t ( ) , ’ sample ’ )
4 add param ( ’ 1 2 ’ . s p l i t ( ) , ’ group ’ )
5

6 REF = ’ h g r e f s /hg19 . f a ’
7 path gen = lambda x : ’ {} {} . fq ’ . format ( x [ ’ sample ’ ] , x [ ’ group ’ ] )
8

9 class AlignFastq ( Task ) :
10 inputs = { ’ r eads ’ : F i l e ( ’ o r i g f a s t q ’ , path = path gen ) }
11 t a r g e t s = { ’ s a i ’ : F i l e ( ’ a ln . s a i ’ ) }
12 a c t i o n s = [ ( ’bwa aln {} {} > {} ’ , [REF, ’ $reads ’ , ’ $ s a i ’ ] ) ]
13

14 class CreateBam ( Task ) :
15 mask = [ ’ group ’ ]
16 inputs = { ’ r eads ’ : Al ignFastq . inputs [ ’ reads ’ ] ,
17 ’ s a i ’ : Al ignFastq . t a r g e t s [ ’ s a i ’ ]}
18 t a r g e t s = { ’bam ’ : F i l e ( ’ a ln . bam ’ , mask = mask) }
19 a c t i o n s = [ ( ’bwa sampe {} {} {} | samtools view −Sbh − | samtools

s o r t − > {} ’ , [REF, ’ $ s a i ’ , ’ $reads ’ , ’$bam ’ ] ) ]
20

21 class GetCoverage ( Task ) :
22 mask = [ ’ group ’ ]
23 inputs = { ’bam ’ : CreateBam . t a r g e t s [ ’bam ’ ]}
24 t a r g e t s = { ’ cov ’ : F i l e ( ’ cov . csv ’ , mask = mask) }
25 a c t i o n s = [ ( ’ ( echo va l ; samtools rmdup {} − | samtools mpileup − |

cut −f 4 ) > {} ’ , [ ’$bam ’ , ’ $cov ’ ] ) ]
26

27 class CombineCoverage ( Task ) :
28 mask = [ ’ group ’ , ’ sample ’ ]
29 inputs = { ’ cov ’ : GetCoverage . t a r g e t s [ ’ cov ’ ]}
30 t a r g e t s = { ’ csv ’ : F i l e ( ’ combined . csv ’ , mask = mask) ,
31 ’ pdf ’ : F i l e ( ’ p l t cov . pdf ’ , mask = mask , root = ’ . ’ ) }
32 a c t i o n s = [ ( combine csvs , [ ’#cov ’ , ’#csv ’ ] ) ,
33 ( ””” echo ” l i b r a r y ( g g p l o t 2 ) ; pd f ( ’{} ’ )
34 g g p l o t ( read . csv ( ’{} ’ ) , aes ( x = v a l ) ) +
35 geom densi ty ( aes ( c o l o r = f a c t o r ( sample ) ) ) ”\
36 | R −−v a n i l l a ””” , [ ’ $pdf ’ , ’ $csv ’ ] ) ]
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Listing 2: Task “partition” using DoIt alone

1 de f t a s k p a r t i t i o n ( ) :
2 ””” P a r t i t i o n aptamer sequences in to motif−conta in ing ( f g ) and motif−

f r e e ( bg ) based on d i s t ance from MOTIF ”””
3 f o r fami ly in f a m i l i e s :
4 f o r t f in fami ly . t f s :
5 f o r exp in t f . exper iments :
6 f o r c y c l e in exp . c y c l e s :
7 s e q f i l e = ”%s/%s ” % ( o r i g d a t a d i r , ge tSequenceF i l e ( family ,

t f , exp , c y c l e ) )
8 f o r mot i f in t f . mot i f s :
9 f g f i l e = ”%s/%s ” % ( top data d i r , ge tContextF i l e ( family ,

t f , exp , cyc l e , motif , ’ fg ’ ) )
10 b g f i l e = ”%s/%s ” % ( top data d i r , ge tContextF i l e ( family ,

t f , exp , cyc l e , motif , ’ bg ’ ) )
11 e n s u r e d i r ( f g f i l e )
12 e n s u r e d i r ( b g f i l e )
13 y i e l d {
14 ’name ’ : ’ : ’ . j o i n ( [ s e q f i l e , mot i f ] ) ,
15 ’ a c t ions ’ : [ ( par t i t i on aptamer s , [ s e q f i l e , motif ,

f g f i l e , b g f i l e ] ) ] ,
16 ’ f i l e d e p ’ : [ s e q f i l e ] ,
17 ’ t a rge t s ’ : [ f g f i l e , b g f i l e ] ,
18 ’ c lean ’ : True ,
19 }

Listing 3: Task “partition” using JUDI along with DoIt

1 c l a s s P a r t i t i o n ( Task ) :
2 ””” P a r t i t i o n aptamer sequences in to motif−conta in ing ( f g ) and motif−

f r e e ( bg ) based on d i s t ance from MOTIF ”””
3 inputs = { ’ seq ’ : F i l e ( ’ seq . f a s tq ’ ) }
4 t a r g e t s = { ’ fg ’ : F i l e ( ’ f g . txt ’ ) , ’ bg ’ : F i l e ( ’ bg . txt ’ ) }
5 a c t i o n s = [ ( par t i t i on aptamers , [ ’ $seq ’ , ’#motif ’ , ’ $fg ’ , ’ $bg ’ ] ) ]
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Listing 4: Modification of command string to execute task in HPC environment

1 class AlignFastq(Task):

2 inputs = {’reads’: File(’orig_fastq ’, path = path_gen)}

3 targets = {’sai’: File(’aln.sai’)}

4 actions = [(’srun -n 1 -N 1 -c 1’+’bwa aln {} {} > {}’, [REF , ’

$reads ’, ’$sai’])]

command line arguments for the number of nodes (-N), the number of tasks (-n) and the number
of CPUs per task (-c) are set accordingly. Though srun is a blocking call, the desired parallel
execution of multiple tasks is achieved by invoking doit with option -n.

For HPC systems with other workload managers (e.g. qsub) the same can be achieved using
the interactive/blocking command line options (e.g. -I -x).

For task actions specified as python callables the same can be achieved by moving the function
call to standalone python script and calling the new script as a command line string from the task
actions as shown in the example above.

S10 Discussion

In this paper, we introduced a workflow management system with a novel way of handling parameter
settings and file path specifications with the motto: define once, reuse many times. We have
implemented our ideas using an existing Python based build system DoIt [S4] mainly for two
reasons: 1) DoIt does not require to learn any new language in addition to Python, and 2) it is
more flexible for implementing our ideas quickly. However, our ideas can also be implemented in
other WMS such as Snakemake [S2] and Nextflow [S1]. Though for the simple example in Fig. S3
JUDI takes almost same number of lines as Snakemake, for a larger pipeline as in [S3] JUDI requires
far less scripting. For example, the file name expansion due to the masked parameter ‘group’ needed
hard-coding in lines 11-12, Listing 1 of [S2], imagine the effort required if there were more masked
parameters and one or more parameters had a relatively large number of possible values!

There are a few features in Snakemake [S2] and Nextflow [S1] which are not implemented in
JUDI which could be easily implemented in a future version. One such example is to support
temporary intermediate files which are not saved across invocation of the pipeline. Nextflow also
provides an advanced way of handling files using streams, here we confined on file.

Finally our solution can be extended to have graphical user interface. When combined with
interfaces like iPython Notebooks, JUDI could facilitate reproducible research by providing a way
to explore unpublished parameter settings.
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